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What is dimension reduction?

Dimension reduction refers to the mapping of the 

original high-dim data onto a lower-dim space

 Criterion for dimension reduction can be different based on 

different problem settings

 Unsupervised setting: minimize the information loss

 Supervised setting: maximize the class discrimination

Given a set of data points of p variables

Compute the linear transformation (projection)



What is dimension reduction? – linear case

Linear transformation

Original data reduced data



Why dimension reduction?

Most machine learning and data mining techniques may not be 

effective for high-dimensional data 

 Curse of Dimensionality

 Query accuracy and efficiency degrade rapidly as the dimension 

increases.

The intrinsic dimension may be small. 

 For example, the number of genes responsible for a certain type of 

disease may be small.



Why dimension reduction?

Visualization: projection of high-dimensional data onto 2D 

or 3D.

Data compression: efficient storage and retrieval.

Noise removal: positive effect on query accuracy.



Example: a job satisfaction questionnaire

A questionnaire with 7 items



Example: a job satisfaction questionnaire

A questionnaire with 7 items, each item corresponds to a variable

N = 200 (participants) 

satisfaction with supervision

satisfaction with pay

Strong 

correlation 

means high 

redundancy



Redundant?

which one is redundant?

 highly redundant data are likely to be compressible  -- essential 

idea for dimension reduction



More examples

Face recognition:

 Representation: a high-dimensional vector (e.g., 20 x 28 = 560) 

where each dimension represents the brightness of one pixel

 Underlying structure parameters: different camera angles, pose 

and lighting condition, face expression, etc.



More examples

Character recognition:

 Representation: a high-dimensional vector (e.g., 28 x 28 = 784) 

where each dimension represents the brightness of one pixel

 Underlying structure parameters: orientation, curvature, style 

(e.g., 2 with/without loops)



More examples

Text document analysis:

 Representation: a high-dimensional vector (e.g., 10K) of term 

frequency over the vocabulary of the word

 Underlying structure parameters: topic proportions, clustering 

structure



More examples

Motion capture:

 Representation: pose is determined, e.g., by the 3D coordinates 

of multiple points on the body

 Underlying structure parameters: pose type

 Motion can be viewed as a trajectory on the manifold



More examples

Microarray gene expression:

 Representation: vector of gene expression values or sequences 

of such vectors

 Underlying structure parameters: correlated (or dependent) 

gene groups



Dimension reduction algorithms

Many methods have been developed

We will cover PCA and LLE as examples

Unsupervised Supervised

Linear

Non-linear

PCA, ICA,

SVD, LSA (LSI)

Isomap,

LLE,

MDR

LDA,

CCA,

PLS

Learning with 

Non-linear kernels



PCA: Principal Component Analysis

probably the most widely-used and well-known of the 

“standard” multivariate methods

invented by Karl Pearson (1901) and independently 

developed by Harold Hotelling (1933)

first applied in ecology by Goodall (1954) under the name 

“factor analysis” (“principal factor analysis” is a synonym of 

PCA).



Review: Eigenvector, Eigenvalue

For a square matrix A (p x p), the eigenvector is defined as

 where u is an eigenvector and     is the corresponding eigenvalue

Put in a matrix form

For symmetric matrices, the eigenvectors can be orthogonal

 Thus: 



PCA for dimension reduction

Minus the empirical mean to get centered data

Compute the covariance

Doing eigenvalue decomposition

 Let U be the eigenvectors of S corresponding to the top d

eigenvalues

Encode data

Reconstruct data

An eigen-decomposition process to data covariance matrix



Apply to data covariance -- eigensystem

The eigenvectors of the covariance     define a new axis system

 Any point       in the X-axis system,       is the data mean, the 

coordinate in the U-axis system is:



A 2D Example

2D data represented in 1D dimensions

[http://setosa.io/ev/principal-component-analysis/]



A 2D Example

2D data represented in 1D dimensions

[http://setosa.io/ev/principal-component-analysis/]



A 3D Example

3D data represented in 2D dimensions

[http://setosa.io/ev/principal-component-analysis/]



A high-dimensional Example



Eigenfaces



How to choose d?

Measure the total variance accounted for by the d principal 

components

 the percentage of the variance accounted for by the i-th

eigenvector:

 Account for a minimum percentage of total variance, e.g., 95%:



Theory of PCA

There are three types of interpretation

 Minimum variance

 Least reconstruct error

 Probabilistic model



Maximum Variance Formulation

Given a set of data points

Goal:

 Project the data into an d-dimensional (d < p) space while 

maximizing the variance of the projected data 

p

N

X d

N

Y



Maximum Variance Formulation

Let’s start with the 1-dimensional projection, i.e., d = 1

We only care about the projection direction, not the scale, so 

we assume

The projection is

Mean and variance of projected data:

 sample covariance



Maximum Variance Formulation

Now, we get a constrained optimization problem

 where

Solve it using Lagrangian methods, we get

 The eigenvector problem

 The lagrange multiplier is the eigenvalue

 The eigenvector corresponds to largest eigenvalue is 1st PC.



Maximum Variance Formulation

Additional components can be incrementally found

 where                     and 

Solve this problem with Lagrangian method, we have

 which leads to

 Left multiplying        , we get (remember     is eigenvector)

 Thus, 



Maximum Variance Formulation

For the general case of an d dimensional subspace, it is 

obtained by the d eigenvectors                          of the data 

covariance matrix S corresponding to the d largest 

eigenvalues



Minimum Error Formulation

A set of complete orthonormal basis

Each data point can be represented as

 Due to the orthonormal property, we can get



Minimum Error Formulation

A set of complete orthonormal basis

We consider a low-dimensional approximation

 where      are constants for all data points

The best approximation is to minimize the error



Minimum Error Formulation

A set of complete orthonormal basis

The best approximation is to minimize the error

 we get (proof?)

 Use the general representation                             , we get that 

the displacement lines in the orthogonal subspace



Minimum Error Formulation

With the result

We get the error

The optimization problem

 where



Minimum Error Formulation

Consider a 2-dimensional space (p=2) and a 1-dimensional 
principal subspace (d=1). Then, we choose      that minimizes

 We have:

We therefore obtain the minimum value of J by choosing      
as the eigenvector corresponding to the smaller eigenvalue

We choose the principal subspace by the eigenvector with the 
large eigenvalue



Minimum Error Formulation

The general solution is to choose the eigenvectors of the 

covariance matrix with d largest eigenvalues

 where 

The distortion measure (i.e., reconstruction error) becomes



PCA Reconstruction
By the minimum error formulation, the PCA approximation can be 
written as:

We have

Essentially, this representation implies compression of p-dim data into a 
d-dim vector with components



Probabilistic PCA

A simple linear-Gaussian model

Let z be a latent feature vector

 In Bayesian, we assume it’s prior

A linear-Gaussian model

 this gives the likelihood

 the columns of W span a linear subspace



Probabilistic PCA

By the properties of Gaussian, we can get the marginal



Unidentifiability issue

Any rotation of the latent dimensions leads to invariance of 

the predictive distribution

 Let R be an orthogonal matrix with 

 Define 

 Then, we have 

 which is independent of R



Inverse of the Covariance matrix

Evaluating the inverse of the covariance matrix C has 

complexity           . We can do inversion as follows

 where the d x d matrix M is:

Evaluating the inverse of M has complexity



Probabilistic PCA

By the properties of Gaussian, we can get the posterior

 The posterior mean depends on x (a linear projection of x)

 Posterior covariance is independent of x



Maximum Likelihood PCA

Given a set of observations                 , the log-likelihood is

We get the MLE:                   and



Maximum Likelihood PCA

Log-likelihood

 The stationary points can be written as (Tipping & Bishop, 1999)

 is diagonal with eigenvalues     ; R is an arbitrary d x d orthogonal 

matrix;        is p x d matrix whose columns are eigenvectors of S

 The maximum of likelihood is obtained while the d eigenvectors are 

chosen to be those whose eigenvalues are the d largest

 MLE for       is:

 The average variance associated with the discarded dimensions

Read proof at [Tipping & Bishop. Probabilistic Principal Component Analysis, JRSS, 1999]



Maximum Likelihood PCA

Since the choice of R doesn’t affect the covariance matrix, we 
can simply choose 

Recover the conventional PCA

 Take the limit               , we get the posterior mean

 which is an orthogonal projection of the data point into the 
latent space

 So we recover the standard PCA



EM Algorithm for PPCA

E-step: evaluate expectation of complete likelihood

 where

M-step: optimizes over parameters



Bayesian PCA

A prior is assumed on the parameters W

Inference can be done in closed-form, as in GP regression

Fully Bayesian treatment put priors on



Factor Analysis

Another simple linear-Gaussian model

Let z be a latent feature vector

 In Bayesian, we assume it’s prior

A linear-Gaussian model

 is a diagonal matrix

 this gives the likelihood

 the columns of W span a linear subspace



Factor Analysis

We can the inference tasks almost the same as in PCA

The predictive distribution is Gaussian

EM algorithm can be applied to maximum likelihood 

estimation



PCA in high-dimensions

What is p is very large, e.g., p >> N? 

 which is a            matrix

 Finding the eigenvectors typically has complexity
 Computationally expensive

 The number of nonzero eigenvalues is no larger than N
 Waste of time to work with S

 How about working with the                full rank Gram matrix?



Dual PCA – PCA in high-dimensions

For centered data, we have

 with eigenvalues and eigenvectors

 with eigenvalues and eigenvectors

By left-multiplying        to                            , we get

,     

Thus, 



Kernel PCA

PCA is linear: the reduced dimension representation is 

generated by linear projections

Kernel PCA is nonlinear by exploring kernel trick

Apply dual PCA in the Hilbert space

 where k(.,.) is the reproducing kernel

[Scholkopf, Smola, Muller. Kernel Principal Component Analysis, 1999]



Example of Kernel PCA



Example of Kernel PCA



Nonlinear Dimension Reduction

(Manifold Learning)



Manifold Learning

Manifold: a smooth, curved subset of an Euclidean space, in 
which it is embedded

A d-dim manifold can be arbitrarily well-approximated by a d-dim 
linear subspace, the tangent space, by taking a sufficiently small 
region about any point



Manifold Learning

If our data come from a manifold, we should be able to do a local linear 
approximation around each part of the manifold, and then smoothly 
interpolate them together into a single global system

To do dimension reduction, we want to find the global low-dim 
coordinates



Locally linear embedding (LLE)

A nonlinear dimension reduction technique to preserve neighborhood 
structure

Intuition: nearby points in the high dimensional space remain nearby 
and similarly co-located w.r.t one another in the low dimensional space

[Roweis & Saul, Science, Vol 290, 2000; Saul & Roweis, JMLR 2003]



How does LLE work?

Step 2: minimize reconstruction error Step 3: neighborhood-preserving embedding

geometric structure W



Implementation details

Free parameter: K – number of neighbors per data point

Original manifold

samples

Embedding results by LLE with various K



Implementation details 

Step 1: choose neighborhood – many choices

Note: different points can have different numbers of 

neighbors



Implementation details 

Step 2: minimize reconstruction error

 each data point can be done in parallel – locality

 Solution (Lagrange methods): 



Implementation details 

What’s happening if K > p? 

 The space spanned by k distinct vectors is the whole space

 Each data point can be perfectly reconstructed from its 
neighbors

 G is singular! (fewer constraints than parameters)

 The reconstruction weights are no longer uniquely defined

 Example (D=2, K=4)



Implementation details 

What’s happening if K > p? 

 The space spanned by k distinct vectors is the whole space

 Each data point can be perfectly reconstructed from its neighbors

 G is singular!

 The reconstruction weights are no longer uniquely defined

Regularized opt. problem: (save ill-posed problems)

 Solution (Lagrange methods): 



Implementation details 

Step 3: neighborhood-preserving embedding

 all data points are coupled together – global coordinates

 Solution (Lagrange methods) – eigenvalue problem: 

centered around the origin

unit covariance

Find the d eigenvectors with the lowest eigenvalues



More examples

[Roweis & Saul, Science, Vol 290, 2000; Saul & Roweis, JMLR 2003]



More examples

1965 grayscale 20 x 28 images (D=560); K = 12

[Roweis & Saul, Science, Vol 290, 2000; Saul & Roweis, JMLR 2003]



Many other algorithms

[van der Maaten et al., Dimension Reduction: A Comparative Review, 2008]



[van der Maaten et al., Dimension Reduction: A Comparative Review, 2008]

Note:  n is N; D is p in our slides



No Free Lunch

The “curvier” your manifold, the denser your data must be!



Matlab Toolbox

Laurens van der Maaten

http://lvdmaaten.github.io/drtoolbox/ (34 techniques for 
dimensionality reduction and metric learning)

http://lvdmaaten.github.io/drtoolbox/


What is dimension reduction? – linear case

Linear transformation

Original data reduced data



What is feature selection?

Linear transformation

Original data reduced data



Feature selection methods

FS is popular in supervised learning by maximizing some function 
of predictive accuracy

Selecting an optimal set of features is NP-hard (Weston et al., 
2003)

FS Learning

FS Learning

FS & 

Learning

Approximate methods:
 Filter methods [Kira & Rendell, 1992] (Separate)

 Based on feature ranking (individual predictive power); 

 A pre-processing step and independent of prediction models 
(optimal under very strict assumptions!) [Guyon & Elisseeff, 
2003]

 Wrapper methods [Kohavi & John, 1997] (Half-
integrated)
 Use learning machine as a black box to score subsets of 

variables according to their predictive power

 Can waste of resources to do many re-training!

 Embedded methods (Integrated)
 Perform FS during the process of training; Usually specific to 

given learning machines

 Data efficient and Can avoid many re-training!



Unsupervised feature selection

x and y are redundant in discriminating the two clusters (i.e., 

each one decides the clustering results) 



Unsupervised feature selection

y is irredundant in discriminating the two clusters

Note: irrelevant features can misguide clustering



Unsupervised feature selection

Different feature subsets lead to different clustering

Which one should we pick?



Unsupervised feature selection

A wrapper framework for unsupervised feature selection

Some key issues:

 Different feature subsets have different numbers of clusters

 The feature selection criteria have biases w.r.t feature subset 

dimensionality



Feature Search

An exhaustive search is intractable (      possible feature 

subsets)

Greedy search:

 Sequential forward search

 Starting from 0 features

 Add one feature at a time to maximize the gain of some criterion

 Stop when no improvement

 Sequential backward elimination

 Start from the full set

 Eliminate one feature at a time to minimize the loss of some criterion

 Stop when no change



Clustering algorithm

Any clustering algorithms can be used in the wrapper 

framework



Feature subset section criteria

“different classifications [clusterings] are right for different 

purpose, so we cannot say any one classification is best” 

(Hartigan, 1985)

Some commonly used criteria:

 Scatter separability (applicable for any clustering methods)



Feature subset section criteria

“different classifications [clusterings] are right for different 

purpose, so we cannot say any one classification is best” 

(Hartigan, 1985)

Some commonly used criteria:

 Maximum likelihood (applicable for probabilistic methods) 



The need for finding the number of clusters

The number of clusters varies with dimension

Some selection methods exist for K (Dy & Brodley, 2003)

[Dy & Brodley, Feature section for unsupervised learning, JMLR 2003]



What you need to know

Motivations for dimension reduction

Derivations of PCA

LLE

Feature selection



Homework 1 out, due in two weeks!

Reading materials:

 Chapter 12 of Bishop’s PRML

 References in slides


